Development and validation of high power and impurity tolerant fuel cell systems ready to run on industrial quality dry hydrogen
European Comission
ExpectedOutcome :
Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines.
Projects results are expected to contribute to all of the following outcomes:
- Support industrial heavy-duty applications that have considerable potential for CO2 emission reduction by utilisation of green hydrogen. Specifically, cold ironing (idling) of ships and ground power supply in ports are potential use cases in line with the proposed activity.
- Support the EU industry to establish first value chains for hydrogen use in stationary, port and aviation infrastructure (including maritime and heat re-use for other applications) providing a nucleus for expansion to other areas.
- Prepare the ground for development of commercial / industrial scale combined heat and power (CHP) unit(s) and/or prime power unit(s) from EU suppliers (100 kWe – 1 MWe);
- Support the demonstration of the deployment of the next generation of commercial/industrial scale fuel cell CHP and/or prime power units from EU suppliers.
The project results are expected to contribute to the following objectives and KPIs of the Clean Hydrogen JU SRIA:
- Reduction of CAPEX and TCO of stationary fuel cells of all sizes and end use applications for cold ironing and ground power supply addressed by the current Call;
- Preparation and demonstration of the next generation of fuel cells for stationary applications able to run under 100% H2 and other H2-rich fuels whilst retaining high performance.
- Specifically, the following KPIs are expected to be reached:
- Electrical efficiency of the system 52% (LHV) at nominal power at Beginning of Life (BoL);
- Total system power degradation of 0.4% at rated power measured over at least 1,000 hours of continuous operation at nominal operating conditions;
- 98% availability of the system during whole testing period cumulating ≥ 5,000 operating hours;
- Warm start time and switching between full and part load operation in 10 minutes;
- Targeted capital production system costs based on 100 MWe/annum production volume of 2,000 €/kWe;
- Non-recoverable platinum group metals (especially in electrodes) < 0.07 gr/kWe, if platinum group metals are present;
- Improvement of flexibility of systems in operation in particular with reversible fuel cells and integration with thermal storage. Scope :
EU is a world leader in fuel cell technology. Fuel cells “made in Europe” have undergone a successful development and the different types of FC driven devices, mainly in the power range up to 20 kWe, are on the way to deployment in multiple stationary power markets. The EU automotive industry is on the cutting edge of development of hydrogen fuelled heavy duty vehicles, which however are operated with high purity hydrogen and have thus less requirements on longevity.
Development of high power range fuel cell systems projects CISTEM[1], DEMOSOFC[2], ComSos[3], GRASSHOPPER[4]) as well as fuel flexibility towards the blends with hydrogen (project SO-FREE[5]) have been already addressed by previous EU funded projects paving the way for this actual next step : efficient and reliable high power output systems operating on industrial quality hydrogen. The coming “green” hydrogen economy however, requires highly efficient and flexible power generators in the power range 100 kW to 1 MW and that are able to operate with industrial quality dry hydrogen (95% pure). The generators in this power range are required for decarbonisation of maritime, aviation and other sectors, including the energy supply for critical infrastructure (prime power), charging stations for local electrical vehicle fleets, and idling, cold ironing, and ground operation.
This topic aims to bridge the power gap between small stationary and MW installations, by developing and validating a building block in the shape of a renewable hydrogen fuelled fuel cell system (of at least 100 kW), which can be customised for various applications, have a modular design and be impurity tolerant. The duration of the validation should be at least 5,000 hours. This building block should be able to operate at any location having access to any renewable hydrogen supply sources underground storage facilities initially used for natural gas storage, natural gas grid enabled to transport hydrogen as well as dedicated hydrogen grid. Moreover, the durable and flexible (full and partial load) operations of a ≥ 100 kW fuel cell system with industrial quality dry hydrogen (95% pure) should be also explored. Ability of operation on a second type of fuel or hydrogen blends may be included too. The validation should be performed for use case cold ironing or ground power supply at the site, where industrial quality dry hydrogen fuel without blending is available.
The following activities should be within the scope of this topic:
- Hydrogen fuelled system design and development utilising existing fuel cell stack manufacturing technologies;
- Analysis of impurities in hydrogen coming from renewable hydrogen generators, storage and other sources (expected impurities to be considered are CO, odorants, CH4, N2, CO2, ethane and propane with total content up to 5%) and development of impurity-tolerant system;
- Quantification of degradation in fuel cells and BoP components, and the effect of operation parameters on degradation at different impurity level and operational cycles;
- Risk assessment of safety aspects in relation to the future certification of the system and techno-economical assessment for a selected application;
- System operation with commercially available and affordable hydrogen with major impurities/contaminants including state of health monitoring;
- Dynamic modelling of system performance on hydrogen and hydrogen blends (if reasonable for the application selected) and system dynamic load and transient behaviour operation according to the end-user load profile(s) for selected application(s).
Efficient heat extraction and re-use may be addressed to increase total system efficiency. The utilisation of existing but not commercially available single stack with considerably increased power output, robustness etc. in comparison to the state-of-the-art technology (e.g. 20 kWe for SOFC, 120 kWe for PEMFC) may be considered as a cost-effective path to higher power output units in parallel to utilisation of commercially available stacks.
Extraction of hydrogen from different hydrogen carriers is not in the scope of this topic. Consortia are expected to gather comprehensive expertise from the EU research and industrial community to ensure broad impact by addressing the abovementioned items. A participation of end user(s) for the selected system application is expected.
Proposals are expected to address sustainability and circularity aspects.
Activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with JRC (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[6] to benchmark performance and quantify progress at programme level.
Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.
The JU estimates that an EU contribution of maximum EUR 4.00 million would allow these outcomes to be addressed appropriately.
The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2023 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis.
Specific Topic Conditions :
Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.
[1]https://cordis.europa.eu/project/id/325262
[2]https://cordis.europa.eu/project/id/671470
[3]https://cordis.europa.eu/project/id/779481
[4]https://cordis.europa.eu/project/id/779430
[5]https://cordis.europa.eu/project/id/101006667
[6]https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en
General conditions
- Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes
Proposal page limits and layout: described in Part B of the Application Form available in the Submission System
- Eligible countries: described in Annex B of the Work Programme General Annexes
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide .
- Other eligibility conditions: described in Annex B of the Work Programme General Annexes
Additional eligibility condition: Maximum contribution per topic
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:
HORIZON-JTI-CLEANH2-2023 -01-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
HORIZON-JTI-CLEANH2-2023 -01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
HORIZON-JTI-CLEANH2-2023 -01-07: The maximum Clean Hydrogen JU contribution that may be requested is EUR 15.00 million
HORIZON-JTI-CLEANH2-2023 -02-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million
HORIZON-JTI-CLEANH2-2023 -02-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
HORIZON-JTI-CLEANH2-2023 -02-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
HORIZON-JTI-CLEANH2-2023 -03-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
HORIZON-JTI-CLEANH2-2023 -04-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
HORIZON-JTI-CLEANH2-2023 -04-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
HORIZON-JTI-CLEANH2-2023 -06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million
HORIZON-JTI-CLEANH2-2023 -06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million
HORIZON-JTI-CLEANH2-2023 -07-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
HORIZON-JTI-CLEANH2-2023 -07-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. This applies to the following topics:
HORIZON-JTI-CLEANH2-2023 -01-05
HORIZON-JTI-CLEANH2-2023 -01-06
HORIZON-JTI-CLEANH2-2023 -01-07
HORIZON-JTI-CLEANH2-2023 -02-01
HORIZON-JTI-CLEANH2-2023 -02-04
HORIZON-JTI-CLEANH2-2023 -02-05
HORIZON-JTI-CLEANH2-2023 -03-01
HORIZON-JTI-CLEANH2-2023 -04-03
HORIZON-JTI-CLEANH2-2023 -04-04
HORIZON-JTI-CLEANH2-2023 -06-01
HORIZON-JTI-CLEANH2-2023 -06-02
HORIZON-JTI-CLEANH2-2023 -07-01
HORIZON-JTI-CLEANH2-2023 -07-02
Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes
Evaluation and award:
Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
- Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual
Exemption to evaluation procedure: complementarity of projects For some topics in order to ensure a balanced portfolio covering complementary approaches, grants will be awarded to applications not only in order of ranking but at least also to one additional project that is / are complementary, provided that the applications attain all thresholds. - HORIZON-JTI-CLEANH2-2023 -01-01 - HORIZON-JTI-CLEANH2-2023 -03-01 Seal of Excellence For the two topics in the Call addressing Hydrogen Valleys, the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicants, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities. In this Annual Work Programme ‘Seal of Excellence’ will be awarded for the following topic(s): - HORIZON-JTI-CLEANH2-2023 -06-01
- HORIZON-JTI-CLEANH2-2023 -06-02
- Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
- Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes
In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:
Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA)).
An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:
- HORIZON-JTI-CLEANH2-2023 -02-02
- HORIZON-JTI-CLEANH2-2023 -05-03 Ownership of results
For all topics in this Work Programme Clean Hydrogen JU shall have the right to object to transfers of ownership of results, or to grants of an exclusive licence regarding results, if: (a) the beneficiaries which generated the results have received Union funding; (b) the transfer or licensing is to a legal entity established in a non-associated third country; and (c) the transfer or licensing is not in line with Union interests. The grant agreement shall contain a provision in this respect.
Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action
For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:
- HORIZON-JTI-CLEANH2-2023 -01-05
- HORIZON-JTI-CLEANH2-2023 -01-06
- HORIZON-JTI-CLEANH2-2023 -01-07
- HORIZON-JTI-CLEANH2-2023 -02-01
- HORIZON-JTI-CLEANH2-2023 -02-04
- HORIZON-JTI-CLEANH2-2023 -02-05
- HORIZON-JTI-CLEANH2-2023 -03-01
- HORIZON-JTI-CLEANH2-2023 -04-03
- HORIZON-JTI-CLEANH2-2023 -04-04
- HORIZON-JTI-CLEANH2-2023 -06-01
- HORIZON-JTI-CLEANH2-2023 -06-02 Subcontracting: For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions. The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions. The target countries are all Member States of the European Union and all Associated Countries.
Specific conditions
- Specific conditions: described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2023 Annual Work Programme
Documents
Call documents:
Application form — As well available in the Submission System from January 31st 2023
- Application form - Part B (HE CleanH2 RIA, IA)
- Application form - Part B (HE CleanH2 CSA)
Evaluation form
Model Grant Agreement (MGA)
Clean Hydrogen JU - Annual Work Programme 2023 (AWP 2023)
Additional documents:
HE Main Work Programme 2023–2024 – 1. General Introduction
HE Main Work Programme 2023–2024 – 13. General Annexes
HE Framework Programme and Rules for Participation Regulation 2021/695
HE Specific Programme Decision 2021/764
Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment
EU Grants AGA — Annotated Model Grant Agreement
Funding & Tenders Portal Online Manual